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Abstract. The symmetries of discrete versions of a class of equations (that includes Klein–
Gordon and wave equations) on a two-dimensional grid are studied. They close the same
Lie algebra as the corresponding continuous equations. The relationship to difference special
functions is also given.

1. Introduction

Difference equations, as well as differential-difference equations, have recently raised a lot
of interest in the physics literature. This is due, in part, to the fact that they constitute a
natural way to approach numerically real physical situations, but also because there are many
models based on such kinds of equations, for instance applications to dissipative systems
[1], nuclear physics [2], and to the study of phonons [3] and magnons [4]. However,
some work has already been developed concerning the symmetries of linear difference
equations on geometric lattices (q-lattices). In these cases, the relevant algebraic structure
is a deformation of the Lie algebra satisfied by the symmetry generators of the corresponding
differential equations (indeed, in some cases it is just aq-algebra [5]).

The original motivation of this paper was to consider some fundamental questions raised
by the problem of discretizing differential equations:

(i) the analysis of the symmetry algebras emerging when the discretization is uniform,
instead of being aq-lattice;

(ii) the use of alternative methods for finding discrete symmetries;
(iii) the application of the discrete symmetries in order to find solutions with specific

features, and their relationship to special functions in a discrete variable.
It is necessary to point out that the discretization process for a differential equation

involves not only the choice of a discrete lattice, but also the selection of some rules for
replacing the differential operators by their discrete analogues. As an example, the operator
∂z can be changed for a symmetric discrete derivative(Tz − T −1

z ) or for a directional one
(Tz−1), Tz being the unit translation operator on the lattice (to be described in detail in the
next section). The symmetries, as well as their commutations, are remarkably different in
these two cases, and accordingly the general properties of the solutions are also modified.
We think that it is of interest to get more information about the physical influence that the
choice of the operators can have on the symmetries of the solutions (it can be said that,
although deformed, the initial algebraic structure of the continuous equation survives in
some sense [6]).
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With regard to the nonlinear differential-difference equations, there have recently been
some attempts to extend the Lie theory for the symmetries of differential equations to this
arena, but the new theory is far from being completed [7–9]. Thus, we think that it is
interesting to carry on a study of the symmetries of some concrete difference equations,
relevant because of their physical meaning. In addition to their intrinsic interest, the results
obtained can be helpful as a guide for more complex equations. In a recent paper [10], the
symmetries of the discretized heat equation were considered. Our purpose now is to apply
a different procedure in order to look for the symmetries of the one-dimensional wave
equation considered in a uniform lattice. This is accomplished in section 2, where it is
shown that the resulting symmetries close a Lie algebra. Meixner polynomials appear when
the solutions of the wave equation are analysed. Section 3 deals with an interesting limiting
case, when one of the discrete variables becomes continuous. In this context the special
functions involved are Charlier polynomials. We conclude the paper with some remarks.

2. The wave equation

Let us start by considering the difference equation{
12
t − 1

s2
12
x +m2

}
8(t, x) = 0. (2.1)

Here, the variablest andx take values in a uniform lattice:t = kτ , x = nσ (τ andσ are
the uniform steps;k, n ∈ Z). In addition, we use the following notation:

1t = 1

τ
(Tt − 1) 1x = 1

σ
(Tx − 1) (2.2)

wherem2 ∈ R. For us, the parameters2 takes the valuess2 = ±1; for other real values of
it, we would get essentially the same results (up to a change of scale in the lattice). The
translation operatorsTt andTx are defined by

Tt8(t, x) = 8(t + τ, x) Tx8(t, x) = 8(t, x + σ). (2.3)

Of course, if we consider the limitτ, σ → 0, equation (2.1) tends to the one-dimensional
Klein–Gordon equation (whens2 = +1):{

∂2

∂t2
− 1

s2

∂2

∂x2
+m2

}
8(t, x) = 0. (2.4)

For the sake of clarity, we will pose the problem explicitly in terms of the integer
variablesk andn, and we will rewrite (2.2) and (2.3) introducing the following notation:

8(t, x) = 8(kτnσ) = φ(k, n) (2.5)

1k = 1

τ
(Tk − 1) 1n = 1

σ
(Tn − 1) (2.6)

Tkφ(k, n) = φ(k + 1, n) Tnφ(k, n) = φ(k, n+ 1). (2.7)

Then, the initial equation (2.1) can be rewritten as{
12
k − 1

s2
12
n +m2

}
φ(k, n) = 0. (2.8)

Our main objective is the richer structure that appears in the casem = 0 (which is precisely
the wave equation ifs2 = 1), nevertheless, as a first step, we will consider the symmetries
appearing whenm 6= 0. This does not require any extra effort and it will also supply us
with a global perspective of this kind of equation.
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Here, by a symmetry of an equation we mean any local operator such that when it acts
on a solution it gives another solution of the same equation. In our case, these solutions are
two-discrete variable functionsφ(k, n) satisfying the linear equation (2.8), that we express
in the form

E(k, n, Tk, Tn)φ(k, n) = 0.

We shall consider symmetriesS(k, n, Tk, Tn) that are made out of the elementary discrete
operatorsk, n, Tk, Tn. Note that, as a consequence, they cannot be thought of as fields
to be exponentiated (as is the case for linear differential equations), but just as discrete
transformations.

In order to guarantee that an operatorS is a symmetry, the commutation

ES = 3E (2.9)

has to be fulfilled, with3 a certain operator whose form will depend onS.
For a symmetryS we propose the following ansatz:

S(k, n, Tk, Tn) = S0(Tk, Tn)+ kSk(Tk, Tn)+ nSn(Tk, Tn)

+k2Skk(Tk, Tn)+ knSkn(Tk, Tn)+ n2Snn(Tk, Tn)+ · · · . (2.10)

In order to apply condition (2.9) on the symmetryS, given by (2.10), one must take into
account the basic commutators

[Tk, k] = Tk [Tn, n] = Tn [Tk, n] = [Tn, k] = 0. (2.11)

Then, it is straightforward to arrive at the following results.
(i) If m 6= 0, we find three independent non-trivial symmetries:

Pk ≡ 1k Pn ≡ 1n (2.12)

L ≡ (kτ )T −1
k 1n + s2(nσ)T −1

n 1k. (2.13)

We have proved that when restricting (2.10) up to second order ink and n there are no
other independent symmetries. The above operators close the following Lie algebra:

[L,Pn] = −s2Pk [L,Pk] = −Pn [Pk, Pn] = 0. (2.14)

Thus, if s2 = +1 we identify this algebra withiso(1, 1), while for s2 = −1 it is isomorphic
to iso(2).

(ii) If m = 0, besides the three symmetries already considered{Pk, Pn, L}, there are
three more, which have the following expressions:

D = kτT −1
k 1k + nσT −1

n 1n (2.15)

Ck = k2τ 2T −2
k 1k + s2n2σ 2T −2

n 1k − (kτ 2T −2
k + s2nσ 2T −2

n )1k + 2knτσT −1
k T −1

n 1n

Cn = k2τ 2T −2
k 1n − s2n2σ 2T −2

n 1n − (kτ 2T −2
k − s2nσ 2T −2

n )1n − 2s2knτσT −1
k T −1

n 1k.

The six generators{Pk, Pn, L,D,Ck, Cn} close a Lie algebra whose non-null commutators
are given by (2.14) together with

[D,Pn] = −Pn [D,Pk] = −Pk
[Pn, Cn] = 2D [Pn, Ck] = −2s2L

[Pk, Ck] = 2D [Pk, Cn] = 2

s2
L

[D,Cn] = Cn [L,Cn] = −2s2Ck

[D,Ck] = Ck [L,Ck] = −2Cn.

(2.16)
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We see that this coincides with the conformal algebraC(1, 1) corresponding to a pseudo-
Euclidean spaceM(1, 1) if s2 = 1 (isomorphic toO(2, 2)), or the conformalC(2)
corresponding to the Euclidean spaceM(2) (isomorphic toO(3, 1)).

Notice that the Lie algebraic structure of the discrete symmetries (2.14) and (2.16) is
independent of the lattice steps(τ, σ ), and coincides with that associated with the continuous
limit equation (2.4). From now on, we will discuss only the casem = 0 (which will be
referred to, for simplicity, as the wave equation). Once the symmetries are known, we
can get solutions of the discrete wave equation among the eigenfunctions of commuting
symmetries. ChoosingPk, Pn, we have a family of solutions

φλ(k, n) = (1 + λτ)k(1 + λ′σ)n λ′ = ±sλ λ ∈ C (2.17)

corresponding to the eigenvalues

Pkφλ(k, n) = λφλ(k, n) Pnφλ(k, n) = λ′φλ(k, n). (2.18)

Our aim now is to express these solutions in terms of the eigenfunctions of another symmetry
operatorD. It is easy to show that the polynomial eigenfunctions ofD have the form

ϑa,b(k, n) = τ a(k)aσ
b(n)b a, b ∈ Z+ (2.19)

and satisfy

Dϑa,b(k, n) = (a + b)ϑa,b(k, n) (2.20)

where(p)c is the Pochhammer symbol(p)c = p(p−1) · · · (p−c+1). One can also check
that the action of the discrete derivatives on these functionsϑa,b(k, n) is

1kϑa,b(k, n) = aϑa−1,b(k, n) 1nϑa,b(k, n) = bϑa,b−1(k, n). (2.21)

The expansion we are looking for is given by

φ+
λ (k, n) = (1 + λτ)k(1 + λ′σ)n =

∞∑
a,b>0

ca,bϑa,b(k, n) (2.22)

where the superscript+ on φ+
λ (k, n) means that we have made the choice of sign in (2.17)

λ′ = +sλ (the other possibility gives analogous results). By applyingPk andPn to equation
(2.22), and taking into account (2.18), we find the unknown coefficients

φ+
λ (k, n) =

∞∑
`=0

λ`

`!

∑̀
a=0

(
`

a

)
(s)`−aϑa,`−a(k, n) ≡

∞∑
`=0

λ`

`!
ψ`(k, n; s) (2.23)

where we have introduced the polynomialsψ`(k, n; s) of order` in the variablesk, n. Let
us fix our attention on these polynomials. They have the remarkable property of also being
eigenfunctions ofD:

Dψ`(k, n; s) = `ψ`(k, n; s). (2.24)

Indeed, if we replace here the explicit form ofD given in (2.15), after a few computations,
we find a three term recurrence relation:

ψ`+1(k, n; s)+ [`(τ + sσ )− (τk + sσn)]ψ`(k, n; s)
+`sτσ [(`− 1)− (k + n)]ψ`−1(k, n; s) = 0 (2.25)

valid for ` > 1.
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The whole set of polynomials{ψ`(k, n; s)}∞`=0 constitutes a basis for the support space
of a representation of the symmetry algebra. We can easily find the action of the symmetry
generators on that basis:

Pkψ`(k, n; s) = `ψ`−1(k, n; s) Pnψ`(k, n; s) = s`ψ`−1(k, n; s) (2.26)

Ckψ`(k, n; s) = `ψ`+1(k, n; s) Cnψ`(k, n; s) = s2`ψ`+1(k, n; s) (2.27)

Dψ`(k, n; s) = `ψ`(k, n; s) Lψ`(k, n; s) = s`ψ`(k, n; s). (2.28)

Looking at the action ofPk andPn given in (2.26), we realize that each of the functions
ψ`(k, n; s) is a solution of the wave equation. Notice that, since{Ck, Pk,D} close an
so(2, 1) algebra whens2 = 1 (so(3) for s2 = −1), the representation restricted to that set of
generators is anso(2, 1) representation. However, it is not irreducible: the one-dimensional
subspace{ψ0(k, n; s)} is invariant. Irreducibility can only be obtained by going to the
quotient space.

There are other useful expressions for this kind of polynomial. For instance, we can
show that they can be generated acting onψ0(k, n; s) = 1:

ψ`(k, n; s) = (τkT −1
k + sσnT −1

n )`1. (2.29)

It is also possible to find a Rodrigues-like formula whenk, n > 0 (if k < 0 or n < 0, it
must be conveniently changed):

ψ`(k, n; s) = k!n!τ k+`(sσ )n+`(Tk + Tn)
` 1

(k − `)!(n− `!)τ k(sσ )n
. (2.30)

The polynomials we have been considering are closely related to the Meixner
polynomials. To show this, recall that the generating function for the Meixner polynomials
is [11]

(1 − z)−γ−x
(

1 − z

c

)x
=

∞∑
`=0

z`

`!
M`(x, γ, c). (2.31)

Comparing with (2.23), the change

z = −λτ c = τ

sσ
x = n γ = −n− k (2.32)

allows us to establish the relationship between both kinds of polynomials (whenk 6 0).
Indeed, (−1

τ

)̀
ψ`(k, n; s) = M`

(
n,−k − n,

τ

sσ

)
. (2.33)

Some properties can be translated from one class of polynomials to the other. For
example, this is the case for the recurrence (2.25), that with the help of the change (2.32),
gives the classical recurrence for the Meixner polynomial:

cM`+1(x, γ, c)− [(c − 1)x + `(1 + c)+ γ c]M`(x, γ, c)− `(`+ γ − 1)M`−1(x, γ, c) = 0.

(2.34)

The same can be done for the Rodrigues formula (2.30) fork 6 0.
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3. Limiting case

Let us undertake now the limiting process in which the discrete variablekτ goes to a
continuum limit. It is achieved with the conditions

k → ∞ τ → 0 kτ = t. (3.1)

In this way, the initial discrete wave equation (given in (2.1) withm2 = 0) turns into{
∂2
t − 1

s2
12
n

}
φ(t, n) = 0. (3.2)

The symmetries of the new equation keep the general form presented in (2.14) and (2.15),
taking care of making the substitutions:1k → ∂t , Tk → 1. The Lie structure is also
preserved. The solutions parametrized byλ behave as follows:

φλ(k, n) = (1 + λτ)k(1 + λ′σ)n → eλt (1 + λ′σ)n ≡ φλ(t, n). (3.3)

The development ofφλ(t, n) in terms ofD-eigenfunctions is similarly obtained:

φλ(t, n) =
∞∑
`=0

λ`

`!
ψ`(t, n; s) (3.4)

where the new ‘semi-discrete’ polynomialsψ`(t, n; s) are defined by

ψ`(t, n; s) =
∑̀
a=0

(
`

a

)
t`−a(sσ )a(n)a. (3.5)

Those polynomials are related to those of Charlier. Recall that Charlier polynomials are
defined using the generating function

ez
(

1 − z

a

)n
=

∞∑
`=0

z`

`!
c`(n; a). (3.6)

Therefore, we conclude that

ψ`(1, n; s) = c`

(
n; −1

sσ

)
≡ c`(n; a). (3.7)

In fact, the limit

lim
k→∞,τ→0,kτ=1

ψ`(k, n; s) = ψ`(t = 1, n; s) ≡ c`

(
n; −1

sσ

)
(3.8)

can be shown to be equivalent to the usual one relating Meixner and Charlier polynomials:

lim
γ→∞

0(γ )

0(γ + n)
M`

(
n, γ,

α

γ

)
= c`(n;α) (3.9)

puttingα = −1/sσ . The action of generators{Pt , Pn,D,Ct , Cn} onψ`(t, n; s) follows the
same rules that we indicated in (2.26)–(2.28). (Note that we have introducedPt andCt
as the limits ofPk andCk, respectively. The same applies toψ`(t, n; s) with respect to
ψ`(k, n; s).) In particular, the action ofPn gives

1nψ`(t, n; s) = `sψ`−1(t, n; s). (3.10)

This is, in Charlier’s terms,

(Tn − 1)c`(n; a) = − `
a
c`−1(n; a) (3.11)

for the valuet = 1.
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To show explicitly the action of the operatorD in the limit, observe that it has the form

D = (t∂t + nσT −1
n 1n). (3.12)

Restricting its action to the functionsφ+
λ , and using the wave equation, we have att = 1

that

D(t = 1) =
(

1

s
+ σnT −1

n

)
1n. (3.13)

Since

Dψ`(1, n; s) = `ψ`(1, n; s) (3.14)

we obtain the difference equation{
σ 2n∇n1n +

(
1

s
− σn

)
1n

}
ψ`(1, n; s) = `ψ`(1, n; s) (3.15)

with ∇n = (1 − T −1
n )/σ . This is the same as the Charlier equation:

n(Tn − 1)(1 − T −1
n )c`(n; a)+ (a − n)(Tn − 1)c`(n; a)+ `c`(n; a) = 0. (3.16)

Other expressions for Charlier polynomials derived from (2.29) and (2.30) are

ψ`(1, n; s) ≡ c`

(
n; −1

sσ

)
= (1 + sσnT −1

n )`1 (3.17)

and the Rodrigues formula

ψ`(1, n; s) = n!(sσ )`+n(1 + Tn)
` 1

(n− `)!(sσ )n
. (3.18)

4. Concluding remarks

We have computed the symmetry algebra corresponding to the discrete wave equation,
obtaining as the main result that it coincides with that of the continuous case: the conformal
Lie algebra. (This is true at least up to the second order; for higher orders it seems that
we would obtain the same infinite-dimensional Lie algebra as that in the corresponding
differential equation.) We have restricted ourselves to one spatial plus one time dimension,
but it is clear that increasing space dimensions would supply us with the corresponding
conformal algebra.

As in the continuous case, the symmetries of discrete equations can be used in order to
get a class of solutions that are invariant under subalgebras of the symmetry operators. For
instance, the functionsφλ given in (2.17) were obtained as eigenfunctions of the Abelian
subalgebra〈Pk, Pn〉, while the functionsψ` defined by (2.23) are solutions invariant under
the subalgebra〈D,L〉. However, in general, the use of symmetries does not allow for the
separation of variables in the original equation. This is in striking contrast to the continuous
case, and is a strong limitation due to the underlying grid.

We have shown that the solutionsφλ can be expanded using the polynomial
eigenfunctionsψ` of the dilation generatorD, and, hence, the former play the role of
generating functions of the latter. The polynomialsψ` are closely related to classical
special functions: Meixner and Charlier polynomials. This relationship was to be expected:
Meixner and Charlier polynomials obey difference equations similar to our original equation.
Nevertheless, we must point out that the aforementioned solutions depend on both variables,
k andn, and cannot be separated by symmetry reduction as in the continuous case. Thus,
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the connection with orthogonal polynomials has been accomplished by imposing a certain
condition on these two variables.

We believe that a further investigation in this line could throw some light on the link
between difference symmetries and difference special functions. Our guess is that other
special functions of this type (Krawtchouk, Hahn, and so on) will appear in the study of
the symmetries of other difference equations set up for physical problems [12].

Another important point to be mentioned is that one would like to design a general
procedure to discretize a large class of differential equations in such a way that their
symmetries should be conserved in the process. The mere substitution of the derivatives
by discrete derivatives can be seen only as a first approximation, but obviously it does not
seem to be a fully satisfactory answer to this program. The same point remains open for
the q-discretizations (the only difference here is the replacement of the Lie algebra by a
q-algebra). Some work in that direction is now in progress.
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